CONSERVATION OF BIODIVERSITY IN ITALIAN POULTRY BREEDS: deepening and monitoring TuBAvI-2

Breed data sheet

BIONDA PIEMONTESE

Gallus gallus domesticus Sp.

Origin and morphological, genetic, reproductive, and productive traits

FONDO EUROPEO AGRICOLO PER LO SVILUPPO RURALE: l'Europa investe nelle zone rurali

MINISTERO DELL'AGRICOLTURA DELLA SOVRANITÀ ALIMENTARE E DELLE FORESTE

The presented data were registered in nucleus populations conserved at the University of Turin (UniTO).

Latest update: February 17th, 2023

Bionda piemontese

Gallus gallus domesticus Sp.

Breed data sheet: origin and morphological, genetic, reproductive, and productive traits

Breed origin and development

Name of the breed	Bionda piemontese
Synonyms or local names	Bionda di Villanova, Bionda di Cuneo, Rossa delle
	Crivelle, Nostralina
Geographic origin	Piedmont
Geographic distribution	Piedmont
Estimated total population size	3400 (Castillo et al., 2021)
Extinction risk status (FAO, 1998)	Not at risk
Any other specific information	Dual purpose free-range breed

Historical origin

Bionda Piemontese is a local poultry breed distributed throughout the Piedmont region since 1930s. The first evidence of its presence can be traced back to 1938, when prof. Vittorio Vezzani, Director of the Experimental Poultry Center in Turin, described its features and started a breed selection project. In the first post-world war period, Bionda Piemontese was almost abandoned, due to its substitution with fast growing hybrid lines as a main consequence of industrialization and intensive agriculture systems. Fortunately, since 1999, the Professional Institute for Agriculture and Environment of Verzuolo (CN) has started a recovery project for this slow growing breed, leading to the creation of a breed standard, approved by the Italian Federation of Poultry Associations (FIAV) in 2007. Bionda Piemontese was a Slow Food presidium until 2017.

Since 2014, the University of Turin has started a programme of conservation and genetic improvement.

Qualitative and quantitative morphological traits in adult breeders

Discrete or qualitative traits

Feather morphology	Normal		
Feather distribution	Normal		
Plumage structure	Thick and well adherent to the body, abundant cape		
Plumage colours	Fawn/golden, with coloured tail		
Colour features	Bi-colour, with sexual dimorphism		
Chick plumage colour	Yellow		
Comb type	Simple comb, red; in the male it is upright, in the female		
	the rear part falls to one side		
Comb spikes	Four to seven spikes		
Ear-lobe colour	Cream white to yellow (red permitted); well-developed in		
	the male		
Beak colour	Yellow		
Iris colour	Orange		
Muffs	Absent		
Beard	Absent		
Tuft	Absent		
Skin colour	Yellow		
Shank colour	Yellow		
Shank feathering	Free from feathers		
Skeletal variants	-		
Other specific and distinct	Red, well-developed wattles		
visible traits			

Colour pattern

In the **male**, fawn plumage (chamois to golden) with black/blue/white feathers in tail and wings; primaries can be the same colour as the tail. In the **female**, golden fawn plumage, lighter after the first moult, with black/blue/white feathers in the tail; the cape can show a black edging.

Quantitative traits

Deremetere	Ma	le	Female		
Farameters	Average±SD* Min-max		Average±SD*	Min-max	
Body weight (g)	2596±186	2420-2946	2082±162	1894-2430	
Body length (cm)	46,2±1,6	43-49	40,3±1,5	38-42	
Chest circumference (cm)	34,7±1,1	33-37	32,0±1,1	30-34	
Shank length (cm)	9±0,2	8.5-9,5	7,8±0,3	7-8	
Shank diameter (cm)	1,1±0,1	1,0-1,2	0,8±0,1	0,6-0,9	
Wing span (cm)	41,8±1,5	39-44	36,7±2,3	32-41	

*SD: standard deviation

Genetic traits

Characterisation of the breed with Single Nucleotide Polymorphisms (SNPs)

Molecular marker	Affymetrix Axiom 600K Chicken Genotyping Array
Laboratory that performed the	Department of Agronomy, Food, Natural Resources,
analyses	Animals and Environment (DAFNAE)
	University of Padua
Analysed parameters	MAF: minor allelic frequency
	Ho: observed heterozygosis
	He: expected heterozygosis
	F _{HOM} : inbreeding coefficient

Year		N**	MAF	Но	He	F _{HOM}
2019	Mean	22	0.283	0.325	0.317	0.116
	SD*		0.210	0.186	0.164	0.025

*SD: standard deviation; **N: number of samples

Characterisation of nucleus populations with microsatellites and mating plans

Molecular marker	Microsatellites (26 markers)
Laboratory that performed the	Laboratory of Animal Molecular Genetics
analyses	Department of Veterinary Science (DSV)
	University of Turin
Analysed parameters	Ne: effective number of alleles
	Na: observed number of alleles
	I: Shannon diversity index
	H-Ind: individual variability index
	Ho: observed heterozygosis (average H-Ind)
	He: expected heterozygosis
	F: fixation index
	P: average kinship index
Indexes used to schedule mating	H-Ind
plans	Р

Year		N**	Na	Ne	I	Но	He	F	Р
2020	Mean	69	5.286	3.358	1.312	0.683	0.683	0.003	0.45
	SE*		0.667	0.240	0.079	0.055	0.022	0.068	
2022	Mean	39	4.35	2.90	1.10	0.56	0.58	0.07	0.49
	SE*		0.38	0.24	0.09	0.05	0.04	0.04	0.02

*SE: standard error; **N: number of samples

Reproductive and productive quantitative traits

Oviposition, brooding and incubation data

Age at sexual maturity of hens (weeks)	24-28
Length of first oviposition cycle (weeks)	45
Annual egg production per hen (min-max)*	150-180
Average clutch size (min-max)	N.a.**
Clutch interval (days)	N.a.**
Incubation length (days)	21

*As measured during the first year of age, min-max of family line

**N.a: Not available information

Egg-quality traits

Parameters	First oviposition cycle*		Second oviposition cycle**		
	Average	rage Min-max Average		Min-max	
Egg weight (g)	55.8	42.8-66.8	63.6	46.6-68.8	
Shell colour	Cream white-pink				

* Total n. of measured eggs: 14587; ** Total n. of measured eggs: 6133

Parameters (sample measurement)	Average	Min-max
Egg weight (g)	60.2	52.9-65.2
Shell weight (g)	8	6.3-9.6
Albumen weight (g)	33	25.8-37
Yolk weight (g)	19.4	17.8-20.9
Egg Shape Index*	75	71.9-80.3

* Egg Shape Index (ESI) = short diameter/long diameter x 100

Body weight and growth data

	Male we	eight (g)	Female w	Female weight (g)		
Age (weeks)	Average	SD*	Average	SD*		
0 (hatching)	38.69	2.92	39.11	2.72		
8	787.09	98.53	667.06	82.49		
12	1222.44	151.49	948.56	104.86		
18	1710.48	224.59	1362.80	176.42		
26	2307.30	294.51	1733.11	251.84		
30	2450.25	283.28	1798.27	284.95		
34	2474.81	290.48	1818.94	275.37		

*SD: standard deviation

Mortality

	Ave	erage (%)
Age (weeks)	Male	Female
0-1	0.1	0.1
1-8	0.05	0.05
8-20	0.01	0.01
20-34	0.01	0.01

Slaughter data (age: 5 months)

Slaughter parameters	Male		Female	
	Average	SD*	Average	SD*
Live weight (kg)	2.9	3.0	2.0	2.4
Carcass weight (eviscerated) (kg)	1.8	2.0	1.3	2.0
Carcass weight (eviscerated) yeald (%)	62		65	

*SD: standard deviation

Rearing traits

Breed type	Rustic, rural, lively	
Growth speed (precocious vs tardive)	Tardive	
Feathering speed (precocious vs tardive)	Precocious	
Broodiness	Low	
Parental care attitude	Low	
Ease of breeding	Easy	
Male:female ratio for breeding	1:10	
Tolerance or resistance to diseases and parasites	Good	
Tolerance to extremes of temperature	Good	
Reported uses (meat, eggs)	Primary: meat	
	Secondary: eggs	

Bionda piemontese male and female

Centre for the Conservation of Local Poultry Genetic Resources, UniTO

Centre for the Conservation of Local Poultry Genetic Resources, UniTO

Bibliography

Di Francesco G, Falciola R, Lazzaroni C, Moriano G, Regis E (2002) La Bionda, la Bianca e il Grigio. Vol. 1 - La Bionda e la Bianca. Ed. AsproAvic

TuBAvl (2017-20) TuBAvl-2 (2021-24)

Collective projects within the poultry sector funded with the support of the **European Agricultural Fund for Rural Development** (EAFRD)

https://ec.europa.eu/agriculture/rural-development-2014-2020_en

Ministry of agriculture, food sovereignty and forestry –

National Rural Development Programme 2014/2022 – Measure 10.2 – Conservation, use and sustainable development of genetic resources in agriculture

Project coordinator

Prof. Silvia Cerolini Department of Veterinary Medicine and Animal Sciences University of Milan Email silvia.cerolini@unimi.it www.pollitaliani.it