

Servizio di Analisi

Laboratorio di Genetica Molecolare Animale

Razza BRIANZOLO UNIMI

Valutazione Variabilità GENETICA BIODIVERSITA'

Sono stati caratterizzati geneticamente 20 soggetti appartenetti alla razza di tacchini Brianzolo: 9 maschi e 11 femmine.

Sono stati inizialmente analizzati 19 marcatori, di cui 11 scartati a causa della percentuale troppo elevata di dati mancanti. I risultati dell'analisi dei restanti 8 marcatori mostrano la presenza di 17 alleli con un polimorfismo del 50% (4 loci risultano monomorfi). Tutti i loci risultano in equilibrio. Il numero medio di alleli è 2,8 e quello effettivo 1,5; l'eterozigosi osservata risulta essere 27,9. Nella tabella 1 si ripotano i valori medi degli indici di variabilità.

Pop		N	Na	Ne	I	Но	He	uHe	F
Brianzoli	Mean	19,875	2,750	1,508	0,466	0,279	0,250	0,256	-0,114
	SE	0,125	0,796	0,199	0,182	0,111	0,095	0,098	0,084

Tabella 1: Valori medi degli indici di variabilità:

N= numero dei soggetti; **Na**= numero di alleli per locus; **Ne**= ricchezza allelica; **I**= indice di Shannon (indice di strutturazione della popolazione); **Ho**= eterozigosi osservata; **He**= eterozigosi attesa; **uHe**= eterozigosi corretta; **F**= indice di consanguineità

Per ciascun locus analizzato, sono state calcolate le frequenze alleliche (Tabella 2) e quelle genotipiche (grafico della Figura 1).

Locus	Allele	Freq	Locus	Allele	Freq
ADL268	N	20	MCW69	N	20
	94	1,000		158	0,750
LE1258	N	20		160	0,025
	308	1,000		162	0,025
MCW216	N	20		164	0,125
	138	0,625		166	0,025
	146	0,200		172	0,050
	148	0,150	MCW98	N	20
	150	0,025		226	0,450
MCW206	N	20		230	0,550
	222	1,000			
MCW81	N	20			
	113	1,000			
MCW295	N	19			
	85	0,053			
	87	0,658			
	89	0,079			
	91	0,132			
	97	0,026			
	99	0,053			

Tabella 2: frequenze alleliche

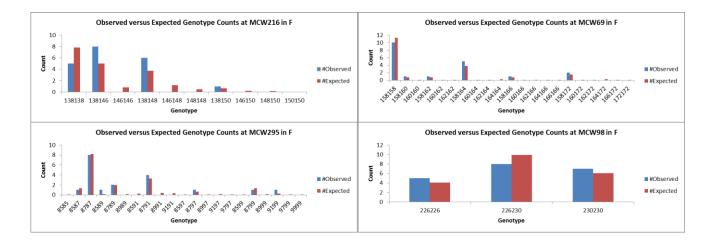


Figura 1: frequenze genotipiche

Valutazione CONSANGUINEITA'

Come stima della consanguineità è stata analizzata l'**eterozigosi media osservata** (Ho=0,28), riportata nel grafico sottostante, insieme alla mediana, deviazione standard (SD), errore standard (SE), valore massimo e minimo; i valori di media e mediana sono molto simili.

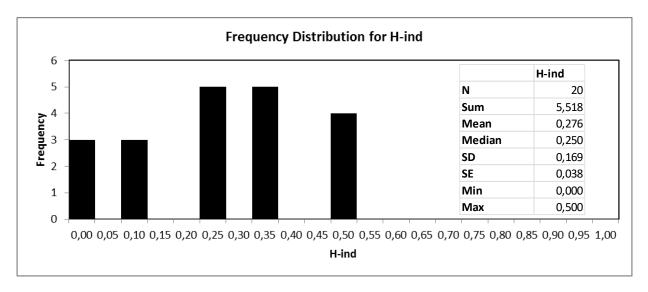


Figura 2: distribuzione della consanguineità molecolare individuale (H-ind)

Il grafico nella Figura 2 mostra la distribuzione della consanguineità molecolare individuale (H-ind) nella popolazione analizzata. La distribuzione complessiva segue un andamento a campana con spostamento della distribuzione verso sinistra (valori mediamente bassi di variabilità individuale).

Struttura genetica della popolazione

I profili genetici dei soggetti analizzati sono stati utilizzati per lo studio della struttura genetica della popolazione. La matrice di distanza è stata calcolata utilizzando la parentela molecolare in termini di alleli condivisi. L'analisi delle componenti principali evidenzia la variabilità genetica esistente nel gruppo campionato. Il grafico nella Figura 3 illustra la distribuzione dei soggetti in termini di diversità genetica: i soggetti più simili sono vicini nel grafico e quelli più distanti geneticamente sono lontani. La rappresentazione grafica ad albero delle distanze genetiche (Figura 4) mette in evidenza l'esistenza di 4 linee familiari.

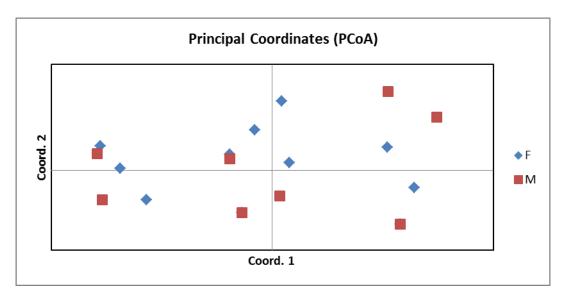


Figura 1:distribuzione dei soggetti in termini di diversità genetica: VAL M=maschi; VALB F=femmine.

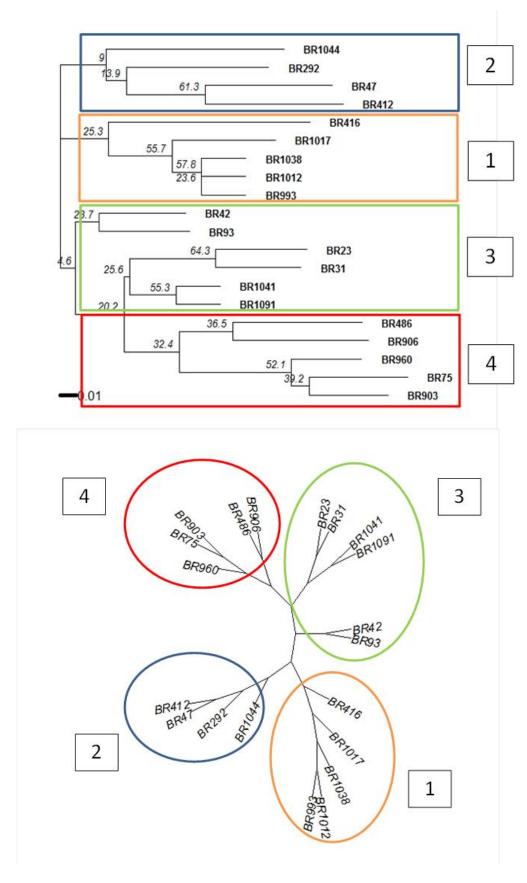


Figura 2: rappresentazione grafica delle distanze genetiche

INDICI di Variabilità

Per ciascun individuo, sono stati definiti l'indice di variabilità individuale (H-ind) e l'indice di parentela media (P) (Tabella 3).

Sample	H-ind	Р	FAM	SESSO
BR1017	0,13	0,76	1	F
BR993	0,00	0,78	1	F
BR1044	0,50	0,73	2	F
BR292	0,50	0,75	2	F
BR412	0,38	0,72	2	F
BR31	0,50	0,76	3	F
BR93	0,38	0,79	3	F
BR1091	0,25	0,80	3	F
BR903	0,38	0,73	4	F
BR906	0,13	0,75	4	F
BR960	0,25	0,75	4	F
BR416	0,14	0,81	1	М
BR1012	0,00	0,78	1	М
BR1038	0,00	0,78	1	М
BR47	0,38	0,72	2	М
BR42	0,25	0,80	3	М
BR23	0,50	0,76	3	М
BR1041	0,25	0,80	3	М
BR75	0,38	0,72	4	М
BR486	0,25	0,75	4	М

Tabella 3: indici di variabilità individuale e indici di parentela media per ciascun individuo:

H-ind= indice di Variabilità Genetica individuale (eterozigosi individuale), varia da 0 a 1. Valori alti indicano una più alta variabilità genetica del soggetto e sono preferibili nella scelta dei riproduttori.

P= indice di Parentela Media, varia da 0 a 1. Valori alti indicano un elevato grado di parentela del soggetto con gli altri soggetti appartenenti alla stessa razza. Nella scelta dei riproduttori sarebbero da preferire valori più bassi di P.

FAM= identificativo della linea genetica familiare.

La parentela media della popolazione risulta essere 0,76 (SE=0,01; SD=0,03). Per ciascuna linea familiare è stato calcolata la parentela media tra soggetti (Tabella 4).

F1	F2	F3	F4
0,90	0,80	0,85	0,81

Tabella 4: parentela media tra soggetti per ciascuna linea familiare

Piano di Accoppiamento

Scelta femmine

Per i piani di accoppiamento sono stati usati l'indice di variabilità individuale (H-ind) e l'indice di parentela (P) medio rispetto a tutti i soggetti analizzati. I soggetti con H-ind più elevato permettono di conservare una variabilità genetica maggiore mentre quelli con P più bassi permettono di contenere l'incremento di consanguineità. Le femmine dovrebbero essere selezionate sulla base dell'indice H-ind per massimizzare la conservazione della variabilità genetica ma il numero esiguo per linea familiare non ha permesso la selezione.

Scelta maschi

Per i maschi sono state calcolate le parentele medie con le femmine di ciascuna linea familiare (Tabella 5).

	Fam	Sex	F1	F2	F3	F4
BR416	1	М	0,88	0,81	0,81	0,71
BR1012	1	М	0,92	0,69	0,78	0,69
BR1038	1	М	0,92	0,69	0,78	0,69
BR47	2	М	0,72	0,80	0,70	0,65
BR42	3	М	0,81	0,74	0,85	0,72
BR23	3	М	0,69	0,74	0,81	0,72
BR1041	3	М	0,81	0,70	0,87	0,76
BR75	4	М	0,61	0,70	0,72	0,83
BR486	4	М	0,69	0,65	0,78	0,80

Tabella 5: parentele medie dei maschi calcolate con le femmine di ciascuna linea familiare

Gli accoppiamenti sono stati proposti sulla base dei contributi ottimali, minimizzando la parentela tra i riproduttori: il gruppo femmine è stato formato tenendo in considerazione le famiglie identificate, mentre i maschi sono stati selezionati tenendo in considerazione l'indice H-ind e la parentela familiare mediante il calcolo dell'indice di conservazione (IC). In rosso i soggetti che presentano un IC inferiore alla media ed in verde i maschi da accoppiare con le rispettive famiglie (Tabella 6).

Sample	Fam	H-indiv	P1	P2	Р3	P4	IC%1	IC%2	IC%3	IC%4
BR416	1	0,14	0,88	0,81	0,81	0,71	-0,26	-0,08	-0,08	0,21
BR1012	1	0,00	0,92	0,69	0,78	0,69	-0,37	0,27	0,01	0,27
BR1038	1	0,00	0,92	0,69	0,78	0,69	-0,37	0,27	0,01	0,27
BR47	2	0,38	0,72	0,80	0,70	0,65	0,17	-0,04	0,22	0,37
BR42	3	0,25	0,81	0,74	0,85	0,72	-0,06	0,12	-0,19	0,17
BR23	3	0,50	0,69	0,74	0,81	0,72	0,24	0,12	-0,09	0,17
BR1041	3	0,25	0,81	0,70	0,87	0,76	-0,06	0,22	-0,24	0,06
BR75	4	0,38	0,61	0,70	0,72	0,83	0,48	0,22	0,17	-0,14
BR486	4	0,25	0,69	0,65	0,78	0,80	0,24	0,37	0,01	-0,04

Tabella 6: accoppiamenti proposti sulla base dei contributi ottimali. **IC**= indice di conservazione; **IC**%= indice di conservazione basato sulla parentela media familiare