Department of Agronomy Food Natural resources Animals and Environment

Progetto collettivo beneficiario per il Comparto Avicoli con il sostegno del Fondo Europeo Agricolo per lo Sviluppo Rurale (FEASR) https://ec.europa.eu/agriculture/rural-development-2014-2020 it

UNIVERSITÀ **DEGLI STUDI** DI PADOVA

Exploring the genomic basis of shank and eggshell coloration in **Italian native chicken breeds**

Perini F.^{1,*}, Cendron F.¹, Lasagna F.², Cassandro M.^{1,3}, Penasa M.¹

¹University of Padova, Department of Agronomy, Food, Natural resources, Animals and Environment, 35020 Legnaro (PD), Italy ²University of Perugia, Department of Agricultural, Food and Environmental Sciences, 06121 Perugia, Italy ³Federazione delle Associazioni Nazionali di Razza e Specie, 00187 Roma, Italy

*For correspondence: francesco.perini@unipd.it

Introduction

Eggshell and shank colour are important in poultry selection, breed recognition, and environmental adaptation. This study deepens the genomics of shank and eggshell pigmentation in Italian local chickens to uncover the mechanisms behind these phenotypes.

Materials and Methods

Samples Collection and Genotyping

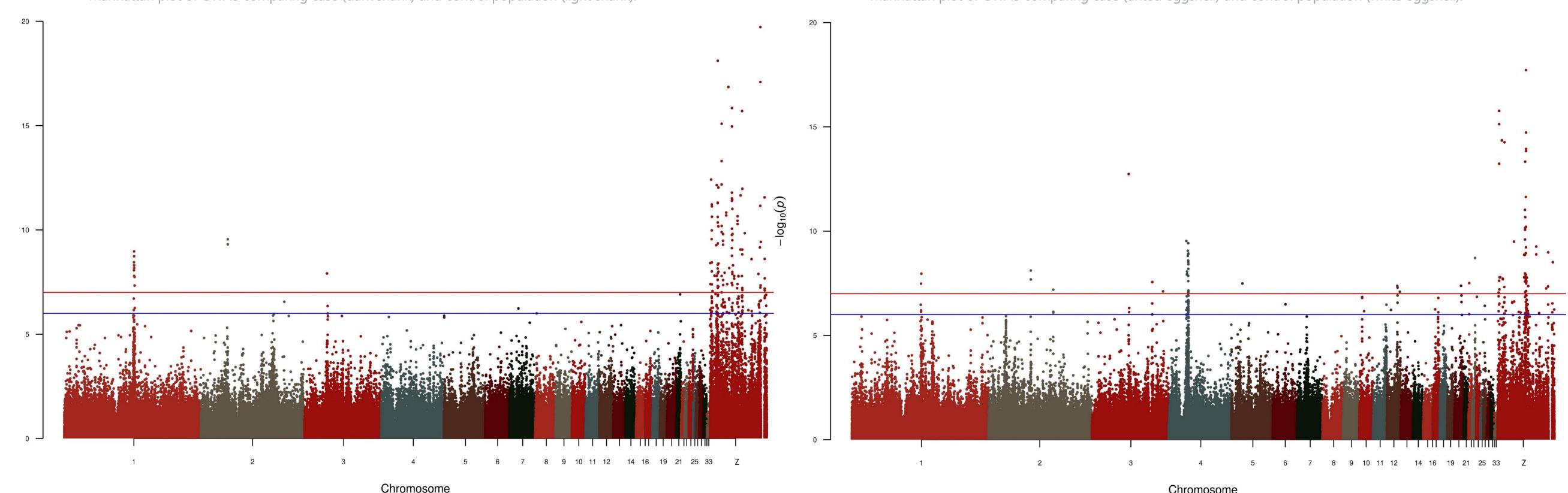
- 418 animals from 18 local breeds evaluated for shank and eggshell pigmentation.
- Chickens genotyped using the 600K Affymetrix SNP chip array.

Genome-Wide Association Analysis

SHANK			
Chromosome and position	Gene ID	Description	Reference
1:100867039-101831504	CHODL, TMPRSS15, NCAM2	Genomic region related to horn pigmentation in cattle	Zsolnai et al. (2021)
2:38800153-38800475	EOMES, CMC1, AZI2, RBMS3	Expression enhanced in embryos of chicken with double comb	Dorshorst et al. (2015)
Z:11112490-12254700	SLC1A3, RANBP3L, SLC45A2	SLC family is implicated in pigmentation in white tiger, and SLC1A3 is upregulated in development of stem cells in hair follicles	Xu et al. (2013)
Z: 18925613-18969905	ERCC8	Groningen White Headed cattle	Gonzalez-Prendes et al. (2022)
Z: 31545096-32699330	NFIB, ZDHHC21, CER1, PSIP1, BNC2, TYRP1	BNC2 strongly associated in human skin pigmentation	Jacobs et al. (2013)
Z: 78827158-79172113	CDKN2A, CDKN2B	Play role in the barring phenotype of the chicken by altering the melanocyte cell cycle	Dorshorst and Ashwell (2009)
Z: 78827158-79172113	MTAP, FEM1C	Associated with skin and shank pigmentation in chicken	Cha et al. (2023)
Z: 78827158-79213873	TRIM36, GRAMD3	Associated with skin and shank pigmentation in chicken	Li et al. (2014)
EGGSHELL			
2:61184687-61271239	JARID2	Involved in regulation of gene expression during embryonic development	Whiteley et al. (2021)
4:26751167-30211214	PCDH18	PCDH18 very close to SLC7A11 responsible for coloration in mammals (of skin) and in chicken plumage and skin	Chen et al. (2019)
5:15963249-15987149	PNPLA2, SLC25A22	Related with production of carotenoids	Ahi et al. (2020)
12:15839118-16014277	MITF, FAM19A4, ARL6IP5, UBA3	Linked to pigmentation in cattle and other species, in duck associated with pigmentation of beak	Gonzalez-Prendes et al. (2022)
Z:10028822-10307280	NPR3, TARS, ADAMTS12, SLC45A2	SLC45A2 is one of the most important gene in coloration	Dorshorst and Ashwell (2009)

- Genome-wide association analysis performed to compare the case and control populations for shank and eggshell colour.
- Shanks: (1) case population (201 animals) characterized by a phenotype classified as dark (grey-black and dark green shank); (2) reference population (155 animals) with yellow-shank pigmentation.
- Eggshell: (1) case population (127 animals) with tinted eggshell (different brownness levels); (2) reference population (277 animals) characterized by white eggshell.

Results and Discussion


- Most interesting locus for shank pigmentation detected on GGAZ, close to the *TYRP1* gene (key role in avian pigmentation).
- Novel loci and genes (e.g., MTAP, CDKN2A, CDKN2B) associated with shank and skin pigmentation, UV protection, and melanocyte regulation were identified.
- A new genomic region for shank pigmentation detected on GGA1, in which CHODL, TMPRSS15, and NCAM2 gene were mapped.
- Fewer significant loci identified for eggshell pigmentation, including \bullet SLC7A11 on GGA4 and MITF on GGA12 (associated with melanocyte processes and pigment synthesis).

Eggshell Tinted vs White

Manhattan plot of GWAS comparing case (tinted eggshell) and control population (white eggshell).

Shank Dark vs Light

Manhattan plot of GWAS comparing case (dark shank) and control population (light shank).

Chromosome

Conclusions

This study shed light on the genomic architecture underlying shank and eggshell colour in Italian local chicken breeds. These phenotypes play an important role in breed identification and conservation.

References

Ahi EP et al. (2020). doi: 10.1186/s12864-020-6473-8 / Cha J et al. (2023). doi: 10.1016/j.psj.2023.102720 / Chen Y et al. (2019). doi: 10.3390/ijms20102493 / Dorshorst B and Ashwell CM. (2009). doi: 10.3382/ps.2009-00134 / Dorshorst B et al. (2015). doi: 10.1371/journal.pgen.1004947 / Gonzalez-Prendes R et al. (2022). doi: 10.1371/journal.pone.0276309 / Jacobs LC et al. (2013). doi: 10.1007/s00439-012-1232-9 / Li G et al. (2014). doi: 10.3382/ps.2014-04164 / Whiteley SL et al. (2021). doi: 10.1371/journal.pgen.1009465 / Xu X et al. (2013). doi: 10.1016/j.cub.2013.04.054 / Zsolnai A et al. (2021). doi: 10.5713/ajas.19.0881

Acknowledgments This work was supported by the project: "Conservation of biodiversity in Italian poultry breeds – TuBAvI". Ministry of agriculture, food sovereignty and forestry (MASAF) – National Rural Development Programme 2014/2020 – Measure 10.2 – Conservation, use and sustainable development of genetic resources in agriculture.

